Optimal k-Level Planarization and Crossing Minimization

نویسندگان

  • Graeme Gange
  • Peter J. Stuckey
  • Kim Marriott
چکیده

An important step in laying out hierarchical network diagrams is to order the nodes on each level. The usual approach is to minimize the number of edge crossings. This problem is NP-hard even for two layers when the first layer is fixed. Hence, in practice crossing minimization is performed using heuristics. Another suggested approach is to maximize the planar subgraph, i.e. find the least number of edges to delete to make the graph planar. Again this is performed using heuristics since minimal edge deletion for planarity is NP-hard. We show that using modern SAT and MIP solving approaches we can find optimal orderings for minimal crossing or minimal edge deletion for planarization on reasonably sized graphs. These exact approaches provide a benchmark for measuring quality of heuristic crossing minimization and planarization algorithms. Furthermore, we can straightforwardly extend our approach to minimize crossings followed by maximizing planar subgraph or vice versa; these hybrid approaches produce noticeably better layout then either crossing minimization or planarization alone.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upward planarization and layout

Drawing directed graphs has many applications and occurs whenever a natural flow of information is to be visualized. Given a directed acyclic graph (DAG) G, we are interested in an upward drawing of G, that is, a drawing of G in which all arcs are drawn as curves that are monotonically increasing in the vertical direction. Besides the upward property, it is desirable that the number of arc cros...

متن کامل

An Alternative Method to Crossing Minimization on Hierarchical Graphs

A common method for drawing directed graphs is, as a rst step, to partition the vertices into a set of k levels and then, as a second step, to permute the vertices within the levels such that the number of crossings is minimized. We suggest an alternative method for the second step, namely, removing the minimal number of edges such that the resulting graph is k-level planar. For the nal diagram...

متن کامل

Complexity of Finding Non-Planar Rectilinear Drawings of Graphs

Monotone Drawings of Graphs p. 13 Upward Geometric Graph Embeddings into Point Sets p. 25 On a Tree and a Path with No Geometric Simultaneous Embedding p. 38 Difference Map Readability for Dynamic Graphs p. 50 Maximizing the Total Resolution of Graphs p. 62 Plane Drawings of Queue and Deque Graphs p. 68 An Experimental Evaluation of Multilevel Layout Methods p. 80 Orthogonal Graph Drawing with ...

متن کامل

On the Minimum Cut of Planarizations

Every drawing of a non-planar graph G in the plane induces a planarization, i.e., a planar graph obtained by replacing edge crossings with dummy vertices. In this paper, we consider the relationship between the capacity of a minimum st-cut in a graph G and its planarizations. We show that these capacities need not be equal. On the other hand, we prove that every crossing minimal planarization c...

متن کامل

Crossing Minimization and Layouts of Directed Hypergraphs with Port Constraints

Many practical applications for drawing graphs are modeled by directed graphs with domain specific constraints. In this paper, we consider the problem of drawing directed hypergraphs with (and without) port constraints, which cover multiple real-world graph drawing applications like data flow diagrams and electric schematics. Most existing algorithms for drawing hypergraphs with port constraint...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010